Tabella de parve gruppos

De testwiki
Version del 20:39, 5 octobre 2022 per imported>Quenke
(diff) ← Version precedente | Version actual (diff) | Version sequente → (diff)
Saltar al navigation Saltar al recerca

La prime tabella lista le gruppos finite con un ordine minor o equal a 20 excepte isomorphitate.

Ordine 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Quantitate de gruppos abelian 1 1 1 2 1 1 1 3 2 1 1 2 1 1 1 5 1 2 1 2
Quantitate de gruppos non-abelian 0 0 0 0 0 1 0 2 0 1 0 3 0 1 0 9 0 3 0 3
Quantitate de gruppos in toto 1 1 1 2 1 2 1 5 2 2 1 5 1 2 1 14 1 5 1 5

Abbreviaturas

Tabella

Ordine Gruppo Subgruppos non-trivial Proprietates Graphico cyclo
1 1S1A2 abelian, cyclic
2 2S2D1 abelian, finite, simple, cyclic, le minus grande gruppo non-trivial
3 3A3 abelian, simple, cyclic
4 4Dic1 2 abelian, cyclic
V422D2 32 abelian, le minus grande gruppo non-cyclic
5 5 abelian, simple, cyclic
6 62×3 3, 2 abelian, cyclic
S3D3   gruppo symetric S3 3, 32 le minus grande gruppo non-ablian
7 7 abelian, simple, cyclic
8 8 4, 2 abelian, cyclic
2×4 24, 32, D2 abelian
23D2×2 72, 7D2 abelian
D4 4, 2D2, 52 non-abelian
Q8Dic2 34, 2 non-abelian; le minus grande gruppo hamiltonian
9 9 3 abelian, cyclic
32 43 abelian
10 102×5 5, 2 abelian, cyclic
D5 5, 52 non-abelian
11 11 abelian, simple, cyclic
12 124×3 6, 4, 3, 2 abelian, cyclic
2×622×3D2×3 36, 3, D2, 32 abelian
D6D3×2 6, 2D3, 3D2, 3, 72 non-abelian
A4 D2, 43, 32 non-abelian; nulle subgruppo de ordine 6
Dic3 6, 34, 3, 2 non-abelian
13 13 abelian, simple, cyclic
14 142×7 7, 2 abelian, cyclic
D7 7, 72 non-abelian
15 153×5 5, 3 abelian, cyclic
16 16 8, 4, 2 abelian, cyclic
24 152, 35D2, 1523 abelian
4×22 72, 44, 7D2, 23, 64×2 abelian
8×2 32, 24, D2, 28, 4×2 abelian
42 32, 64, D2,34×2 abelian
D8 8, 2D4, 4D2, 4, 92 non-abelian
D4×2 4D4, 4×2, 223, 1322, 24, 112 non-abelian
Q16Dic4 8, 2Q8, 54, 2 non-abelian
Q8×2 32×4, 4Q8, 64, 2×2, 32 non-abelian, gruppo hamiltonian
gruppo quasi-dihedre 8, Q8, D4, 34, 22×2, 52 non-abelian
M-gruppo (gruppo non-abelian, non-hamiltonian, modular) 28, 4×2, 24, 2×2, 32 non-abelian
producto semidirecte 44 32×4, 64, 2×2, 32 non-abelian
le gruppo create per matrices de Pauli 32×4, 3D4, Q8, 44, 32×2, 72 non-abelian
G4,4=V44 22×4, 2×2×2, 44, 72×2, 72 non-abelian
17 17 abelian, simple, cyclic
18 189×2 9,6,3,2 abelian, cyclic
6×3 6,3,2 abelian
D9 non-abelian
S3×3 non-abelian
(3×3)α2 con α(1)=(2002) non-abelian
19 19 abelian, simple, cyclic
20 205×4 10,5,4,2 abelian, cyclic
10×25×2×2 5,2 abelian
Q20Dic5 non-abelian
54 gruppo affine AGL1(5) non-abelian
D10D5×2 10,D5,5,5V4,62 non-abelian